skip to main content


Search for: All records

Creators/Authors contains: "Tian, Fanghua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exchange bias effect is the physical cornerstone of applications, such as spin valves, ultra-high-density data storage, and magnetic tunnel junctions. This work studied the room temperature exchange bias effect by constructing a Ni50Mn38Sb12−xGax alloy system with coexisting martensitic phase structures. The study found that the exchange bias effect shows a non-monotonic change with the variation of Ga composition at 300 K, and an obvious room temperature exchange bias effect appears in the alloys with coexisting phase structures of 4O and L10, which is due to the strong exchange coupling between ferromagnetic and antiferromagnetic. Further research on the exchange bias effect and temperature shows that the blocking temperature is 420 K, and the exchange bias can stably exist in a temperature range of ∼200 K around room temperature. This work provides a method to engineer exchange bias effects at room temperature.

     
    more » « less
    Free, publicly-accessible full text available December 4, 2024
  2. We report the magnetic and magnetostrictive behaviors of the pseudobinary ferrimagnetic spinel oxide system (1−x)CoFe2O4–xCoAl2O4 [Co(Fe1−xAlx)2O4], with one end-member being the ferrimagnetic CoFe2O4 and the other end-member being CoAl2O4 that is paramagnetic above 9.8 K. The temperature spectra of magnetization and magnetic susceptibility were employed to detect the magnetic transition temperatures and to determine the phase diagram of this system. Composition dependent and temperature dependent magnetostrictive behaviors reveal an exotic phase boundary that separates two ferrimagnetic states: At room temperature and under small magnetic fields (∼500 Oe), Fe-rich compositions exhibit negative magnetostriction while the Al-rich compositions exhibit positive magnetostriction though the values are small (<10 ppm). Moreover, the compositions around this phase boundary at room temperature (x = 0.35, 0.4, 0.45, 0.5) exhibit near-zero magnetostriction and enhanced magnetic susceptibility, which may be promising in the applications for magnetic cores, current sensors, or magnetic shielding materials. 
    more » « less